
ORIGINAL PAPER
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Abstract Pterocarpus officinalis (Jacq.) seedlings inocu-
lated with the arbuscular mycorrhizal fungus, Glomus
intraradices, and the strain of Bradyrhizobium sp. (UAG
11A) were grown under stem-flooded or nonflooded
conditions for 13 weeks after 4 weeks of nonflooded
pretreatment under greenhouse conditions. Flooding of P.

officinalis seedlings induced several morphological and
physiological adaptive mechanisms, including formation of
hypertrophied lenticels and aerenchyma tissue and produc-
tion of adventitious roots on submerged portions of the
stem. Flooding also resulted in an increase in collar
diameter and leaf, stem, root, and total dry weights,
regardless of inoculation. Under flooding, arbuscular
mycorrhizas were well developed on root systems and
adventitious roots compared with inoculated root systems
under nonflooding condition. Arbuscular mycorrhizas made
noteworthy contributions to the flood tolerance of P.
officinalis seedlings by improving plant growth and P
acquisition in leaves. We report in this study the novel
occurrence of nodules connected vascularly to the stem and
nodule and arbuscular mycorrhizas on adventitious roots of
P. officinalis seedlings. Root nodules appeared more
efficient fixing N2 than stem nodules were. Beneficial
effect of nodulation in terms of total dry weight and N
acquisition in leaves was particularly noted in seedlings
growing under flooding conditions. There was no additive
effect of arbuscular mycorrhizas and nodulation on plant
growth and nutrition in either flooding treatment. The
results suggest that the development of adventitious roots,
aerenchyma tissue, and hypertrophied lenticels may play a
major role in flooded tolerance of P. officinalis symbiosis
by increasing oxygen diffusion to the submerged part of the
stem and root zone, and therefore contribute to plant growth
and nutrition.
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Introduction

Much of the wetlands is subject to flooding due to the
presence of shallow water tables and a decrease in surface
water infiltration (Barrett-Lennard 2003). Flooding causes
hypoxia or anoxia in soils because of the low solubility and
diffusivity of oxygen in water and the rapid use of
dissolved oxygen by microorganisms and roots. Therefore,
there is a decrease in the mineralization of organic matter
and an increase in the denitrification (Barrios and Herrera
1993). Moreover, heavy leaching of soils brought about by
seasonal flooding contributes to the shortage of available N
and P. A number of wetland plants are nodulated legumes
(Walter and Bien 1989; Moreira et al. 1992; Loureiro et al.
1995; Saur et al. 1998; James et al. 2001; Koponen et al.
2003) that also associates with arbuscular mycorrhizal
(AM) fungi (Sanchez-Diaz et al. 1990; Carvalho et al.
2003; Bâ et al. 2004). While the occurrence of AM fungi in
wetland is well documented (Bohrer et al. 2004; Carvalho
et al. 2004; Saint-Etienne et al. 2006), their importance and
function are limited and often contradictory. It is not clear
whether flooding modifies AM effects, as some results
show an improvement in growth and P nutrition over
noncolonized plants (Wigand and Stevenson 1997;
Osundina 1998; Miller and Sharitz 2000; Muok and Ishii
2006; Neto et al. 2006), some showed a decrease (Stevens
et al. 2002), and others did not detect a clear relationship
(Hartmond et al. 1987). The lack of external input of N in
ecosystems increases the demand for biological nitrogen
fixation (Dommergues et al. 1999). Nodulated legumes can
contribute significantly to the N balance of tropical
wetlands and rainforests (Roggy et al. 1999a,b; Koponen
et al. 2003; Diabaté et al. 2004). Legumes generally require
P from mycorrhizas for their nodule formation, nitrogen
fixation, and growth (Dommergues et al. 1999; Vance
2001). However, little is known about the interactions
between AM fungi and nitrogen-fixing bacteria in legumes
growing in wetland ecosystems.

Pterocarpus officinalis (Jacq.) (Fabaceae) is the domi-
nant wetland tree species of the seasonally flooded swamp
forests in the Caribbean basin (Eusse and Aide 1999;
Imbert et al. 2000; Muller et al. 2006). It covers large areas
of the coastal floodplain, and individual trees occur along
rivers and in the mountains. The establishment and
population maintenance of P. officinalis are affected by
the variations in salinity and hydrology and differences in
soil microtopography in swamp forests (Alvarez-Lopez
1990; Eusse and Aide 1999). This tropical wetland tree
species forms bradyrhizobial nodules and arbuscular my-
corrhizas on lateral roots of buttresses both above and
below the water table (Saur et al. 1998; Bâ et al. 2004;
Saint-Etienne et al. 2006). Alvarez-Lopez (1990) suggested
that P. officinalis cannot establish seedlings under flooding

conditions because rooting of germinated fruit did not occur
in water over 3–4 cm deep. If flooding persists, only
germinated seeds transported by water movement to higher
elevations may survive (Alvarez-Lopez 1990). We hypoth-
esized that nodulation and arbuscular mycorrhizas could
improve the performance of P. officinalis seedlings under
flooding. Two questions are addressed in the present study:
(1) Are P. officinalis seedlings adapted to flooding? and (2)
Do arbuscular mycorrhizas and N2-fixing nodules increase
the performance of P. officinalis seedlings under flooding?

Materials and methods

Fungal and bacterial inocula

The AM fungus, Glomus intraradices Schenck & Smith
(DAOM 181602, Ottawa, Agricultural Herbarium, Can-
ada), was propagated on leeks (Allium porrum L.) growing
on TerraGreen™ substrate for 12 weeks on a calcined clay
(Oil-Dri US-special Ty/IIIR, Oil-Dri Company, Chicago,
USA) (Plenchette et al. 1996) under greenhouse conditions.
The leek plants were uprooted, their roots gently washed,
and cut into 0.5-cm-long pieces. Non-AM leek roots,
prepared as above, were used for the control treatment.

Bradyrhizobium sp. (UAG 11 A) strain was isolated
from a root nodule collected during the dry season from a
mature P. officinalis tree growing in the swamp forest of
Port Louis in Guadeloupe, Lesser Antilles (Bâ et al. 2004).
The bacterial inoculant consisted of a 10-day-old pure
culture grown on liquid yeast extract mannitol medium
(Vincent 1970).

Seed germination

Pods of P. officinalis were collected along the river in the
swamp forest of Grande Ravine in Guadeloupe. Pods were
shelled and seeds were surface-sterilized with 3% sodium
hypochlorite (w/w) for 10 min. They were then rinsed
several times in sterile water and germinated in sterile
vermiculite at 25°C in the dark. The germinated seeds were
moved into pots when tap roots were 2–3 cm long.

Experimental design

The potting substrate was a mixture of heat-sterilized
pouzzolane (crushed volcanic rock with particle size
averaging 2 mm) and vermiculite (4:1, v/v). The nutrient
contents (in parts per million) of the heat-sterilized crushed
volcanic rock were as follows: 4.28 K, 15.67 Na, 6.36 Ca,
4.99 Mg, 1.26 NHþ

4 , 2.75 NO�
3 O-extractable), and 0.12

Olsen-P [pH=8.41 (H2O) and pH=7.2 (KCl), 0.11 g/l total
salt and electrical conductivity 0.036 mS/cm]. Black pots
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(22 cm deep, 9 cm diameter) were filled with the substrate
to within 4 cm below the rim. Soil leakage was prevented
by placing a wad of polyester fiber at the bottom of each
pot.

The seedlings were transplanted into pots and inoculated
with Bradyrhizobium sp. alone, G. intraradices alone, or
with both microbial partners. A crude inoculum of 0.35 g of
fresh leek roots colonized by G. intraradices (with about
250 vesicules cm−1) was placed in a hole of the substrate
close to the seedlings root system, or 0.35 g of non-AM
leek roots for the controls. Bradyrhizobial inoculation was
then performed on seedlings by spreading 5 ml (109

bacterial cells ml−1) of a suspension of Bradyrhizobium
sp. on tap root or 5 ml of the culture medium without
bacteria for the controls. All the plants were grown under
well-watered conditions without nutrients for 4 weeks in a
shaded greenhouse receiving approximately 280 W m−2

between February and June 2003, at 24–34°C with a day-
length of about 12 h. Four weeks after transplanting, half of
the pots went through a process of flooding. Seedlings were
flooded every other day with tap water to maintain the
water level 3 cm above the soil surface and to replace
evaporated and/or transpired water in pots without drainage
holes. Nonflooded seedlings were watered every other day
to reach the field capacity in pots with drainage holes. The
pots were arranged in a completely random 4×2 factorial
design comprising eight treatments: (1) flooded G. intra-
radices, (2) flooded Bradyrhizobium sp., (3) flooded G.
intraradices plus Bradyrhizobium sp., (4) flooded non-
inoculated, (5) nonflooded G. intraradices, (6) nonflooded
Bradyrhizobium sp., (7) nonflooded G. intraradices plus
Bradyrhizobium sp., and (8) nonflooded, noninoculated.
Each treatment consisted of ten replicates. The plants were
supplied each month with 50 ml of Long Ashton’s nutrient
solution (Hewitt 1966) without P and N. Treatments were
maintained for 13 weeks after flooding was performed.

Seedling measurements and nutrient analysis

Thirteen weeks after flooding, the number of adventitious
roots was assessed by counting the roots emerging from the
epicotyl. Nodules were collected separately from root and
stem (including adventitious root nodules) and counted.

An acetylene reduction assay (ARA) was performed on
ten freshly detached nodules randomly collected on roots or
stems 13 weeks after flooding was performed. Nodules
were immediately sealed in serum-capped vials, filled with
10% acetylene (C2H2) in air, and incubated at laboratory
temperature for 1 h. Then, gas aliquots of 10 ml were
removed from the vial and injected into a “Vacutainer” for
storage. Ethylene (C2H4) and acetylene concentrations of
the sample were analyzed using flame ionization in a
Hewlett-Packard 5890 II gas chromatography. The ARA

results were considered as positive when the average C2H4

concentration after incubation with nodule was more than
1 μmol g−1 dry nodule h−1. Control root samples without
nodules did not show concentrations above this value.
Nodules were dried at 80°C for 7 days and weighed after
each assay.

Height, collar diameter, and dry weight (7 days at 80°C)
of leaves, shoots, roots, adventitious roots, and the remain-
ing stem and root nodules were evaluated. AM fungal
colonization of roots and adventitious roots was also
measured. The roots were randomly collected for each
seedling, gently washed, cleared, and stained (Phillips and
Hayman 1970). Roots were then cut into 1-cm pieces,
mixed, and placed on slides for microscopic observations at
×250 magnification (Brundrett et al. 1985). A hundred root
pieces were observed per plant. The extent of AM
colonization was expressed as a percentage of the number
of mycorrhizal root pieces per number of nonmycorrhizal
root pieces.

After drying, ground leaf samples were mineralized
through heating at 500°C and digested in hydrochloric acid
for determination of N and P. The total N contents of leaves
were assessed using a Technicon AutoAnalyzer. P was
determined by colorimetry with chain in continuous flow
(Technicon) according to Novozamsky et al. (1983).

Microscopy

Nodule-bearing stem portions were cut from plants, fixed
overnight in 2.5% glutaraldehyde in 0.1 M sodium
cacodylate buffer (pH 7.2) at 4°C, and rinsed in the same
buffer. Thick sections (100 μm thick) of whole nodules plus
the bearing stem were obtained using a Vibratome (Leica,
France), cleared in sodium hypochloride and observed
under an Olympus SZH stereomicroscope.

For thin sections, samples were postfixed for 1 h in 2%
osmium tetroxide and rinsed in distilled water. They were
dehydrated through an ethanol series followed by three
washes in pure ethanol, infiltrated by a resin series of
ethanol–Spurr and then embedded in 100% Spurr resin.
Polymerization took place at 70°C for 48 h. Approximately
0.5- to 1-mm-thick sections were stained with 0.05%
Toluidine Blue O in 1% borax and examined using a Leitz
Ortholux light microscope.

Statistical analysis

All data were subjected to a two-way analysis of variance
and mean values were compared using Newman–Keuls’s
multiple range test (Gagnon et al. 1989). The mean number
of nodules and the percentages of mycorrhizal colonization
were calculated from arcsine (square root) transformed
data.
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Results

After 13 weeks of flooding, hypertrophied lenticels and
aerenchyma (data not shown) tissue were observed on the
submerged portion of the stem above the soil line (Fig. 1a).
A few thick, white, elongated, and branched adventitious
roots had grown from stems (Fig. 1a).

Serial thick sections of stem nodules (Fig. 1b) clearly
reveal the direct link of the peripheral nodular vasculariza-
tion to the stem vascular bundles. Numerous fixation zones
are visible in the nodule with cells densely filled with
bacteroids (Fig. 1c).

Inoculated treatments produced significant effects on
nearly all growth and mineral acquisition traits (Table 1).
Flooding treatments had no significant effect on root and
root nodule dry matter, number of root nodules, nitrogen
fixation in root nodules, and N and P in leaves. Interactions
between inoculation and flooding were significant for
height, stem dry matter, number of root and stem nodules,
stem nodule dry matter, AM colonization, and nitrogen
fixation in stem nodules.

Inoculated treatments did not increase number and dry
weight of adventitious roots (Tables 1 and 2). Collar
diameter and leaf, stem, and total dry weights were
generally higher under flooding than nonflooding (Table 2).
Bradyrhizobium alone enhanced total biomass only under
nonflooding. By contrast, G. intraradices alone stimulated

total biomass under both flooding and nonflooding. There
was no additive effect of Bradyrhizobium and G. intra-
radices on plant growth. However, G. intraradices alone or
with Bradyrhizobium appeared to be more effective in
increasing total biomass of Pterocarpus seedlings, particu-
larly under flooding.

A few nodules were observed on roots of control plants
(Table 3). However, they did not fix nitrogen efficiently when
compared with inoculated treatments (Table 4). The number,
dry weight, and nitrogen fixation of root nodules were nearly
the same in plants inoculated by Bradyrhizobium sp. under
both flooding and nonflooding (Tables 3 and 4).

No AM fungal colonization was noted in roots and
adventitious roots of control plants (Table 3). AM structures
(vesicles and hyphal coils) were found both flooded and
nonflooded. Pterocarpus plants grown under flooding had
relatively high AM fungal colonization compared to
inoculated plants under nonflooding. Elongated adventi-
tious roots also were well colonized by G. intraradices as
they penetrated into the flooded soil (Fig. 1d and Table 3).

Nodules formed on submerged stems and adventitious
roots of flooded seedlings and were able to fix N2 (3–
4 μmol C2H4 h−1 g−1 nodule dry weight) (Table 4). Root
nodules also formed on both nonflooded and flooded
seedlings and were capable of fixing N2 (7–9 μmol
C2H4 h−1 g−1 nodule dry weight). Nitrogenase activity
was lower in stem nodules than in root nodules of seedlings

Fig. 1 a Partial view of the
submerged part of stem in a P.
officinalis seedling. L Lenticels;
AR nod, adventitious root nod-
ules; S nod, stem nodules; R
nod, root nodules. b Longitudi-
nal sections through stem nod-
ules of P. officinalisshowing the
direct link of the peripheral
nodular vascular bundles (VB) to
the stem (S) vascularization.
c Thin sections through nodular
stem nodules illustrating cells
are filled with densely packed
bacteroids (FZ). d Vesicles (V)
within adventitious root
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inoculated by Bradyrhizobium under flooding. There was
no difference in nitrogen-fixing root nodules of inoculated
P. officinalis seedlings by Bradyrhizobium both under
flooding and nonflooding (Table 4). The concentrations of
N in leaves of plants inoculated by Bradyrhizobium

compared with noninoculated plants showed that nitrogen-
fixing root nodules were similarly efficient both under
flooding and nonflooding. Moreover, G. intraradices
significantly contributed to P acquisition in seedlings both
under flooding and nonflooding. Nevertheless, P acquisi-
tion did not improve nitrogen-fixing stem and root nodules
of Pterocarpus seedlings (Table 4).

Discussion

Flooding induced several physiological and morphological
changes in P. officinalis seedlings, including formation of
hypertrophied lenticels, aerenchyma tissue, and adventi-
tious roots on submerged portions of the stem. Flooded
plants grew overall better than nonflooded ones regardless
of inoculation. These results suggest that P. officinalis
seedlings can endure 13 weeks of flooding by developing
some adaptive mechanisms. The high flooding tolerance of
some trees was mainly attributed to the production of
adventitious roots that play a major role in water absorption
and stomatal opening (Gomes and Kozlowski 1980;
Crawford 1982; Liao and Lin 2001; Entry et al. 2002;
Carter et al. 2005). However, we did not measure the
activity of adventitious roots in the present study.

Arbuscular mycorrhiza and root nodules were formed
during the first 4 weeks when Pterocarpus seedlings were
watered to near field capacity. This means that we have, in
part, assessed the proprieties of mycorrhizas and nodules
already established and those of new arbuscular mycorrhi-
zas and nodules formed under flooding. These symbiotic
associations appeared to have been maintained after the
substrate was flooded. Because AM fungi require oxygen to
thrive, stressful regularly flooded environments may be
detrimental to their survival and infectivity (Smith and
Read 1997). Nevertheless, evidence that the AM fungus
remained viable under flooding was provided by the

Table 2 Effect of inoculation with G. intraradices (Gi) and Bradyrhizobium sp. (Br) on growth of P. officinalis seedlings under flooded
conditions (p<5%) (dry weight, d.w.)

Treatments Number of
adventitious roots

Height
(cm)

Adventive root
d.w. (mg)

Collar diameter
(mm)

Total d.w.
(g)

Leaf d.w.
(g)

Stem d.w.
(g)

Root d.w.
(g)

Flooded
Control 4.1 b 51.6 c 20.1 b 8.5 d 5.8 bc 1.9 b 2.3 b 1.6 ab
Gi 4.6 b 47.2 abc 21.3 b 8.3 d 7.1 d 1.9 b 3.2 c 1.9 b
Br 4.1 b 48.3 bc 19.2 b 7.1 bc 6.7 cd 1.8 b 3.5 cd 1.4 ab
Gi + Br 4.8 b 53.8 c 23.4 b 8.0 cd 7.6 d 2.2 b 3.8 d 1.6 ab
Nonflooded
Control 0.0 a 40.6 a 0.0 a 6.1 b 3.6 a 1.0 a 1.5 a 1.1 a
Gi 0.0 a 51.5 c 0.0 a 4.9 a 5.6 bc 1.7 b 2.1 b 1.8 ab
Br 0.0 a 47.5 abc 0.0 a 4.6 a 4.7 b 1.3 a 1.8 ab 1.5 ab
Gi + Br 0.0 a 42.8 ab 0.0 a 6.6 b 4.8 b 1.3 a 2.1 ab 1.5 ab

Those means in a column not sharing a similar letter differ significantly at p<5% by use of the Newman–Keuls multiple range test

Table 1 Significance levels for growth and nutritional parameters in
P. officinalis seedlings at two water levels and inoculated or not with
G. intraradices and Bradyrhizobium sp. alone or together

Trait Flooding Inoculation Flooding ×
inoculation

Height S NS S
Collar diameter S S S
Leaf dry weight S S NS
Stem dry weight S S S
Root dry weight NS S NS
Number of
adventitious roots

S NS NS

Adventitious root dry
weight

S NS NS

Total dry weight S S NS
Adventitious root
colonization

S NS NS

Root colonization S S S
Number of root
nodules

NS S S

Root nodule dry
weight

NS S NS

Number of stem
nodules

S S S

Stem nodule dry
weight

S S S

Nitrogen fixation in
root nodules

NS S NS

Nitrogen fixation in
stem nodules

S S S

N in leaves NS S NS
P in leaves NS S NS

S Significant at p<5%, NS not significant
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increase in the proportion of colonized root and P
acquisition in leaves of P. officinalis seedlings. The increase
in AM colonization with flooding in seedlings suggests a
direct relation between flooding and AM colonization. This
can be explained by the development of lenticels, aeren-
chymatous tissue, and adventitious roots on the submerged
part of the stem that could facilitate oxygen transport to
support newly colonized roots. This is congruent with
reports for salt marsh plants colonized by AM fungi
(Brown and Bledsoe 1996; Carter et al. 2005; Neto et al.
2006). Mycorrhizal Casuarina equisetifolia seedlings were
better adapted to flooding than noninoculated seedlings
because the greater development of adventitious roots and
lenticels increased oxygen availability and therefore AM
colonization of plants (Osundina 1998). Accumulation of
acetaldehyde, a highly toxic intermediate in ethanol
formation, in roots was suggested as the main factor
responsible for flooding injury in flood-sensitive species
(Osundina 1998; Rutto et al. 2002). Adventitious roots and
lenticels may contribute to root aeration and ethanol
removal in flood-tolerant species (Crawford 1982; Liao
and Lin 2001). AM colonization also contributed to

suppress ethanol accumulation in the roots of peach
seedlings (Rutto et al. 2002). Some studies have also
suggested that once AM colonization has taken place, the
AM association can endure prolonged exposure to flooding
(Miller and Sharitz 2000; Neto et al. 2006). The AM
symbiosis seem to have, like flooding, a stressful effect on
Aster trifolium at an early stage of plant development (Neto
et al. 2006). Once the AM symbiosis was established, the
better tolerance of AM A. trifolium plants to flooding was
mediated through an improvement of the osmotic adjust-
ment by accumulating soluble sugars and proline in plant
tissues (Neto et al. 2006).

Flooding induced nodules both on adventitious roots
arising from stems and on the stems themselves. Stem
nodules formed only on submerged parts of flooded
seedlings to within 1 cm of the soil surface, and flooding
appeared essential for their formation. It is clear that, in
flooding condition, P. officinalis seedlings formed true stem
nodules, i.e., connected vascularly to the stem and not to
adventitious roots arising from the stem (James et al. 1992).
The histological organization of stem nodules is similar to
that of aeschynomenoid type of nodules according to Corby

Table 4 Effect of inoculation with Glomus intraradices (Gi) and Bradyrhizobium sp. (Br) on nitrogen fixation, N and P concentrations in leaves
of Pterocarpus officinalis seedlings under flooded conditions (p<5%) (dry weight, d.w.)

Treatments Nitrogen-fixing root nodules
(μmol C2H4/h/g nodule d.w.)

Nitrogen-fixing stem nodules
(μmol C2H4/h/g nodule d.w.)

N leaves % P leaves %

Flooded
Control 1.75 a 0.00 a 1.52 a 0.05 a
Gi 1.83 a 0.00 a 1.45 a 0.10 c
Br 9.03 b 3.73 b 2.10 b 0.06 ab
Gi + Br 8.40 b 4.21 b 2.16 b 0.11 c
Non-flooded
Control 0.00 a – 1.56 a 0.07 b
Gi 1.88 a – 1.43 a 0.11 c
Br 8.30 b – 2.21 b 0.06 ab
Gi + Br 6.97 b – 2.23 b 0.13 c

Those means in a column not sharing a similar letter differ significantly at p<5% by use of the Newman–Keuls multiple range test

Table 3 Effect of inoculation
with G. intraradices (Gi) and
Bradyrhizobium sp. (Br) on
mycorrhizal colonization and
nodulation of P. officinalis
seedlings under flooded condi-
tions (p<5%) (dry weight,
d.w.)

Those means in a column not
sharing a similar letter differ
significantly at p<5% by use of
the Newman–Keuls multiple
range test

Treatments Adventitious
root
colonization
(%)

Number of
root
nodules

Root
colonization
(%)

Root
nodule d.
w. (mg)

Number of
stem
nodules

Stem nodule
d.w. (mg)

Flooded
Control 0.0 a 5.3 a 0.0 a 22.0 a 2.3 b 0.4 a
Gi 56.2 b 3.3 a 66.1 d 41.0 ac 1.6 ab 0.4 a
Br 0.0 a 44.6 bc 0.0 a 131.0 c 12.1 c 7.0 c
Gi + Br 65.8 b 60.3 c 69.6 d 162.0 c 10.5 c 4.0 b
Nonflooded
Control – 1.3 a 0.0 a 8.0 a 0.0 a –
Gi – 8.5 a 28.6 b 34.0 ab 0.0 a –
Br – 50.5 c 0.0 a 181.0 c 0.0 a –
Gi + Br – 31.8 b 44.7 c 112.0 bc 0.0 a –
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(1988), where an intercellular mode of entry takes place at
the base of lateral or adventitious roots (Goormachtig et al.
2004). These observations, combined with observations
made on seedlings in the swamp forests of Guadeloupe (A.
M. Bâ, unpublished data), suggest that stem nodules are
formed and grow on P. officinalis seedlings only under
flooding. Hence, we report in this study the novel
occurrence of stem nodules in P. officinalis seedlings. Stem
nodulation in legumes is a relatively rare structure that was
confirmed only in some nodulated hydrophytes such as
Aeschynomene, Sesbania, Discolobium, and Vigna growing
on seasonally or permanently flooded wetlands in Africa
and South America (Dreyfus and Dommergues 1981;
Alazard 1985; Loureiro et al. 1995; James et al. 2001). In
our study, nitrogenase activity of stem nodules was lower
than that of corresponding root nodules on P. officinalis
seedlings. Root nodules developed and fixed N2 similarly
under both flooding and nonflooding conditions. Therefore,
flooding did not affect root nodule formation and N2

fixation as shown on Discolobium pulchellum (Loureiro et
al. 1994). Furthermore, there was also a significant increase
in N within leaves of both flooded and nonflooded
inoculated plants by Bradyrhizobium, resulting from an
increase in the N2-fixing of root nodules. Nevertheless,
under flooded conditions, N acquisition did not enhance
total dry weight of seedlings when compared with non-
inoculated controls. One possible explanation for this may
be the nitrogenase activity that we detected in root nodules
of controls. However, N2 fixation appeared to be similar to
that in swamp forests (Saur et al. 1998), but is very low
compared to that of hydrophytes such as Aeschynomene,
Sesbania, and Discolobium (Dreyfus and Dommergues
1981; Alazard 1985; Loureiro et al. 1994).

It is surprising to note that AM colonization did not increase
root nodulation in Pterocarpus seedlings under both flooding
and nonflooding. We also found that plants double inoculated
with G. intraradices and Bradyrhizobium displayed a reduc-
tion of root nodulation compared with plants singly inoculated
with Bradyrhizobium in nonflooded conditions. However,
colonization of plants by G. intraradices did not increase
ARA activity compared with plants singly inoculated with
Bradyrhizobium. These results suggest a competitive interac-
tion between both endophytes. G. intraradices was described
as an aggressive AM fungus in terms of intensity of root
colonization, production of vesicles and spores, and require-
ment for photosynthetic products (Graham et al. 1996; Ruiz-
Lozano et al. 2001). This could have lead to a competitive
interaction between G. intraradices and Bradyrhizobium,
which resulted in a less effective combination of endophytes
for root nodulation in nonflooded conditions. In this respect,
Ruiz-Lozano et al. (2001) described detrimental effects on
root nodulation in soybean plants after dual inoculation with
G. intraradices and Bradyrhizobium.

To conclude, this study showed that infectivity and activ-
ity of the nodulated and AM plants seem to be dependent on
soil flooding. Furthermore, it provides supporting evidence
that AM colonization by G. intraradices contributed sub-
stantially to the flooded tolerance of P. officinalis seedlings.
This could be due to the increasing O2 diffusion through the
greater development of adventitious roots, aerenchymatous
tissue, and hypertrophied lenticels on the root zone and
submerged part of the stem. It is therefore possible that AM
colonization and nodulation may contribute to the establish-
ment of P. officinalis along a wider range of soil flooding
levels in swamp forests. However, further experimental
investigations should be done to understand the mechanisms
by which AMF increases AM colonization of P. officinalis
seedlings in flooding and its adaptive significance.
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